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Abstract—In this paper, a scalable iterative projection-type algorithm for solving non-stationary
systems of linear inequalities is considered. A non-stationary system is understood as a large-scale
system of inequalities in which coefficients and constant terms can change during the calculation
process. The proposed parallel algorithm uses the concept of pseudo-projection which generalizes
the notion of orthogonal projection. The parallel pseudo-projection algorithm is implemented using
the parallel BSF-skeleton. An analytical estimation of the algorithm scalability boundary is obtained
on the base of the BSF cost metric. The large-scale computational experiments were performed on
a cluster computing system. The obtained results confirm the efficiency of the proposed approach.
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1. INTRODUCTION

The problem of finding a feasible solution to a linear inequality system also known as a feasibility
problem is often encountered in the practice of mathematical modeling. As examples, we can mention
linear programming [1, 2], image reconstruction from projections [3], tomography image reconstruc-
tion [4] and intensity modulated radiation therapy [5]. In many cases, the linear inequality systems
arising in such context involve up to tens of millions of inequalities and up to hundreds of millions of
variables [2]. Moreover, in mathematical economic models, systems of linear inequalities are often non-
stationary. It means that the coefficients of the system and constant terms are changed during the
process of solving the problem, and the period of changing the source data can be within hundredths of
a second.

At present time, there are a lot of methods for solving systems of linear inequalities. Among these
methods, we can distinguish a class of “self-correcting” iterative methods that can be parallelized
efficiently. Pioneering works here are papers [6, 7], which propose the Agmon–Motzkin–Schoenberg
relaxation method for solving systems of linear inequalities. This method uses the orthogonal projection
onto a hyperplane in Euclidean space. Censor and Elfving in [3, 8] proposed a modification of the
Cimmino method [9–11] for solving systems of linear inequalities in Euclidean space R

n. The similar
method of pseudo-projections based on Fejer approximations was proposed by the authors in [12]. In
the article [2], the pseudo-projection method was used to solve the problem of finding a feasible solution
to a non-stationary linear inequality system. The convergence theorem for this method was proven by
the authors for the case when changing the feasible set is a translation. We have constructed a parallel
implementation of the pseudo-projection method and executed large-scale computational experiments
on a cluster computing system by varying the displacement rate of the polytope M bounding the feasible
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region. Performed evaluation showed that the parallel pseudo-projection algorithm converges only with
very low rate of displacement of the polytope M .

The aims of this article are the following: analyzing the low efficiency of the parallel pseudo-projection
algorithm for the non-stationary case, modifying the algorithm to solve this issue, evaluating the
modified algorithm and conducting the large-scale computational experiments on a cluster computing
system to examine the efficiency of proposed solution.

The paper is organized as follows. In Section 2, we provide a formal definition of a non-stationary
system of linear inequalities and describe a modified pseudo-projection algorithm ModAP calculating a
feasible solution for such systems under condition of source data dynamic changes. Section 3 describes
the ModAPL algorithm, which is a representation of the ModAP algorithm in the form of operations on
lists using the higher-order functions Map and Reduce, and presents a parallel implementation of the
ModAPL algorithm. Section 4 is devoted to an analytical evaluation of the ModAPL parallel algorithm
scalability by using the cost metric of the BSF parallel computation model. Section 5 provides an
information about the implementation of the ModAPL parallel algorithm, as well as describes the results
of large-scale computational experiments on a cluster computing system that confirm the efficiency of
the proposed approach. Section 6 summarizes the obtained results and concludes that the scalability of
the algorithm depends on the number of dynamically changing parameters of the source linear inequality
system.

2. NON-STATIONARY PROBLEM AND PSEUDO-PROJECTION ALGORITHM

Let the following feasible system of linear inequalities be given in R
n:

A(t)x ≤ b(t), (1)

where the matrix A(t) has m rows. The non-stationarity of the system (1) is understood in the sense
that the entries of the matrix A(t) and the elements of column b(t) depend on time t ∈ R≥0. Let M (t) be
a polytope bounding the feasible region of the system (1) at instant of time t. Such a polytope is always
a closed convex set. We will also assume that the polytope M (t) is a bounded set. Let us define the
distance from the point x ∈ R

n to the polytope M (t) as follows:

d
(
x,M (t)

)
= inf

y∈M (t)
||x− y|| ,

where ||·|| signifies the Euclidean norm. Let us denote the i-th row of the matrix A(t) as a
(t)
i . We

assume from now on that a(t)i is not equal to the zero vector for all i = 1, . . . ,m. Let P (t)
i be a half-space

representing a set of feasible points for the i-th inequality of the system (1):

P
(t)
i =

{
x|x ∈ R

n,
〈
a
(t)
i , x

〉
≤ b

(t)
i

}
.

Then, M (t) =
m⋂
i=1

P
(t)
i . Each equation

〈
a
(t)
i , x

〉
= b

(t)
i defines the corresponding hyperplane H

(t)
i :

H
(t)
i =

{
x ∈ R

n|
〈
a
(t)
i , x

〉
= b

(t)
i

}
.

We define the reflection vector ρ
H

(t)
i

(x) of the point x with respect to the hyperplane Hi as follows:

ρ
H

(t)
i

(x) =

〈
a
(t)
i , x

〉
− b

(t)
i∣∣∣

∣∣∣a(t)i

∣∣∣
∣∣∣
2 a

(t)
i .

Then, the orthogonal projection π
H

(t)
i

(x) of the point x onto hyperplane H
(t)
i is calculated by the

equation π
H

(t)
i

(x) = x− ρ
H

(t)
i

(x).
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Define the vector ρ+
H

(t)
i

(x) as a positive slice of the reflection vector

ρ+
H

(t)
i

(x) =
max

{〈
a
(t)
i , x

〉
− b

(t)
i , 0

}
∣∣∣
∣∣∣a(t)i

∣∣∣
∣∣∣
2 a

(t)
i . (2)

The vector ρ+
H

(t)
i

(x) will be a non-zero vector if and only if the point x does not satisfy the i-th inequality

of the system (1). Let us designate

ϕ(t) (x) =
1

h

m∑
i=1

ρ+
H

(t)
i

(x), (3)

where h is the number of non-zero terms in the sum
m∑
i=1

ρ+
H

(t)
i

(x).

Define the half-space Pi (i = 1, . . . ,m) as follows: P
(t)
i =

{
x ∈ R

n|
〈
a
(t)
i , x

〉
≤ b

(t)
i

}
. We will say

that the point x̃ belongs to the half-space P
(t)
i with precision ε > 0 and denote it as x̃∈

ε
P

(t)
i , if the

following condition holds

∀i ∈ {1, . . . ,m}

⎛
⎝x̃ ∈ P

(t)
i ∨

∣∣∣
〈
a
(t)
i , x̃

〉
− b

(t)
i

∣∣∣∣∣∣
∣∣∣a(t)i

∣∣∣
∣∣∣

< ε

⎞
⎠ . (4)

This means that, for any i = 1, . . . ,m, either the point x̃ belongs to the half-space P
(t)
i , or the distance

between the point x̃ and this half-space is less than ε. We assume that the point x̃ belongs to the polytope
M (t) with precision ε, and we will denote it as x̃∈

ε
M (t), if the following condition holds:

∀i ∈ {1, . . . ,m}
(
x̃∈

ε
P

(t)
i

)
.

In other words, for any i = 1, . . . ,m, either the point x̃ belongs to the polytope M (t), or the distance
between the point x̃ and the polytope M (t) is less than ε.

The pseudo-projection algorithm for the non-stationary case is shown in Fig. 1. Here ε is a small
positive value that is a parameter of the algorithm. This algorithm calculates a point x̃ that is an
approximate solution of the non-stationary system of linear inequalities (1) in the sense that the point
x̃ belongs to the polytope M (t) with precision ε (Step 4). If the polytope M does not change over time,
the Algorithm 1 finishes in a finite number of steps for any ε > 0. This follows from the fact that the
mapping α(t) = xk − ϕ(t) (xk) used in the Step 3, when t is fixed, is an single-valued continuous M (t)-
fejerian mapping [13], and consequently the iterative process implemented in the Algorithm 1 converges
to a point belonging to the polytope M (t) [14]. Another proof of the convergence of the Algorithm 1
can be found in [3]. However, both proofs are valid only for stationary problems. The non-stationary

Fig. 1. Pseudo-projection algorithm for non-stationary systems of linear inequalities.
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Fig. 2. The case, when the rate of convergence slows down.

case was considered by us in [2] under the assumption that changing the initial data is a translation of
the polytope M (t). For this case, we have proved the theorem of a sufficient condition of converging the
iterative process implemented by the Algorithm 1.

We have performed a parallel implementation of the Algorithm 1 using the BSF-skeleton [15] and
have executed large-scale computational experiments on the “Tornado SUSU” [16] computing cluster.
We simulated the non-stationarity of the original inequality system by displacing the polytopeM (t) along
a straight line at a given rate. The obtained results show that Algorithm 1 demonstrates good scalability
of up to 200 processor nodes when solving a non-stationary system involving 108002 inequalities and
54000 variables. However, in some cases, the maximum rate of the polytope displacement, at which
the algorithm converged, did not exceed two units per second. It is insufficient for solving practical
problems. Such result can be explained by the simple example shown in Fig. 2. A peculiarity of the Fejer
mapping α(t) = xk − ϕ(t) (xk) used in Step 3 is that each new approximation is closer to the polytope
than the previous one. But, in the case shown in Fig. 2, the Fejer process never reaches the polygon
M . The most we can achieve in a finite number of iterations is to get a point inside of the polygon
vertex vicinity. Assume, that at time t1, the Algorithm 1 starts to perform the iterative process (Step 3)
giving an approximate solution x̃ with distance to the polytope M (t1) less than ε (we used ε = 10−7 in
the experiments). Let the calculation be stopped at time t2. During the elapsed time, the polytope is
displaced to the position M (t2), the distance from which to the point x̃ is more than ε. Therefore, we
have to start the calculation again. In such a way, we will never get a solution with given precision.

In order to repair the problem, we replaced the mapping ϕ(t) used in Step 3 of Algorithm 1 with the
following mapping ψ(t):

ψ(t) (x) = λ
ϕ(t) (x)∣∣∣∣ϕ(t) (x)

∣∣∣∣ , (5)

where λ is a positive constant being a parameter of the algorithm. A peculiarity of the mapping ψ(t) is
that its result is always a vector of fixed length λ. The modified algorithm, named ModAP, is presented
in Fig. 3.

3. PARALLEL VERSION OF MODAP ALGORITHM

To construct a parallel version of the algorithm ModAP, we use the BSF (Bulk Synchronous Farm)
model of parallel computations [17]. In accordance to the technique proposed in [18], we represent the
algorithm in the form of operations on lists using the higher-order functions Map and Reduce defined in
the Bird-Meertens formalism [19]. Let us define the list A = [(a1, b1), . . . , (am, bm)], where ai is the i-th
row of the matrix A, and bi is the i-th element of the column b (i = 1, . . . ,m). Here, we omit the upper
index of time (t) assuming the moment of time to be fixed.
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Fig. 3. Modified pseudo-projection algorithm (ModAP).

Fig. 4. ModAP algorithm on lists.

Let us define the parameterized function Fx : Rn × R → R
n × {0, 1} as follows:

Fx (ai, bi) = ρ+Hi
(x) . (6)

This function maps the pair (ai, bi) to the vector yi = ρ+Hi
(x), which is the positive slice of the reflection

vector of the point x relative to the hyperplane Hi = {x ∈ R
n| 〈ai, x〉 = bi}. The higher-order function

Map(Fx,A) applies the function Fx to each element of list A converting it to the following list

B = [y1, . . . , ym] = [Fx(a1, b1), . . . , Fx(am, bm)] ,

where yi ∈ R
n (i = 1, . . . ,m). Let the symbol + denote vector addition operation. Then, the higher-

order function Reduce(+,B) calculates the vector y, which is the sum of the vectors of the list B:
y = y1 + . . . + ym. Obviously, according to the equation (3), we have ϕ (x) = y/h. Taking (5) into
account, we obtain from this

ψ (x) = λ
y

||y|| .

In such a way, we obtain the sequential version of the ModAP algorithm on lists presented in Fig. 4. In
Step 1, the input of the list A containing initial values of the matrix A and the column b of the inequality
system (1) are executed. In Step 2, the zero vector is assigned to the x as an initial approximation.
In Step 3, the Map function calculates the list B of positive slices of the reflection vectors of the point
x relative to the hyperplanes bounding the polytope MA, which is the feasible region of the inequality
system (1). In Step 4, the vector y is calculated as the sum of all positive slices of the reflection vectors.
Step 5 calculates the next approximation x. In Step 6, the original data of the inequality system (1) is
updated. Step 7 checks if the obtained approximation belongs to the polytope MA with precision ε. If so,
then we go to Step 9, where x is output as the approximate solution, after which the iterative process is
stopped. Otherwise, we go from Step 8 to Step 3, and the iterative process continues.

The parallel version of the modified pseudo-projection algorithm on lists (ModAPL) is presented in
Fig. 5. We used the master-slave paradigm [20]. It is assumed that the computing system includes one
master and K slaves (K ≥ 1). In Step 1, the master and all slaves load the source data presented as the
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Fig. 5. ModAPL parallel algorithm on lists.

list A. Step 3 starts the iterative process: the master sends the current approximation x to all slaves.
In Step 4, the slaves independently calculate their part of the list B. In Step 5, the slaves independently
sum up the elements of their sublists of the list B. In Step 6, the calculated vectors y(1), . . . , y(K) are
sent to the master. In Step 7, the master calculates the resulting vector y. Step 8 calculates the next
approximation x. In Step 9, the original data of the inequality system (1) is updated by the master and
all slaves. Step 10 checks the stopping criterion and assigns the appropriate value to the variable exit. In
Step 11, the master sends the value of the variable exit to all slaves. Depending on this value, we either
go to the next iteration or terminate the iterative process (Steps 12–16).

4. ANALYTICAL STUDY OF PARALLEL ALGORITHM

To obtain an analytical estimation of the scalability of the parallel version of the ModAPL algorithm
(Fig. 5) we use the cost metric of the BSF model [18]. It includes the following parameters:

K : number of slave nodes;
ts : time spent by the master node to send current approximation to one slave node

(excluding latency);
tMap : time spent by a single slave node to process the entire list A;
tp : time spent by the master node to process results received from the slave nodes and to

check the stopping criterion;
tr : time spent by the master node to receive the result from one slave node (excluding

latency);
ta : time spent by a node (master or slave) to process an addition of two vectors;
l : length of the list A (the same as the length of the list B);
L : latency (time of transferring one-byte message node-to-node).

For the ModAPL algorithm we have

l = m. (7)

Within one iteration, we introduce the following notation:

cs : number of float values sending from the master node to one slave node;
cMap : number of arithmetic operations to execute the higher-order function Map for the

entire list A;
ca : number of arithmetic operations to add two vectors in n-dimensional space;
cr : number of float values sending from one slave node to the master node;
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cp : number of arithmetic operations performed by the master in Steps 8 and 10 of
Algorithm 4;

cu : number of float values sending from the master node to one slave node in Step 13 of
Algorithm 4.

Calculate the specified values. At the beginning of each iteration in Step 3, the master sends the
vector x containing n float values to every slave. Therefore cs = n. In the Map step (Step 3 of the
Algorithm 3), the function Fx defined by the equation (6) is applied to all elements of the list A having
the lengthm. In view of (2), this implies cMap = (5n+1)m. To add two vectors of dimension n, one must
execute n arithmetic operations. Therefore, ca = n. In Step 6 of Algorithm 4, jth slave node sends the
vector y(j) of dimension n to the master node. Hence it follows that cr = n. Assume that the square root
is calculated by using the first four terms of the Taylor series. This is 9 arithmetic operations. Then, the
execution of Step 8 of Algorithm 4 requires 5n+ 8 arithmetic operations. According to the equation (4),
the execution of Step 11 requires (6n+ 11)m arithmetic operations. Hence it follows that

cp = (6n + 11)m+ 5n+ 8.

If only one value changes in the source data during one iteration, then one real number must be sent in
Step 13. In this case, we have cu = 1. If all values changes in the source data during one iteration, then
(n+ 1)m real number must be sent in Step 13. In this case, we have cu = (n+ 1)m. Let τop denote the
time that a processor node spends to execute one arithmetic operation (or one comparison operations),
and τtr denote the time that a processor node spends to send one float value to another processor node
excluding latency. Then for cu = 1 we get the following values for the cost parameters of the ModAPL
parallel algorithm:

ts = (cs + cu)τtr = (n+ 1)τtr; (8)

tMap = cMapτop = (5n + 1)mτop; (9)

tr = crτtr = nτtr; (10)

ta = caτop = nτop; (11)

tp = cpτop = ((6n + 11)m+ 5n+ 8)τop. (12)

Using the scalability boundary equation from [18], and taking into account (7), we obtain from (8)–(12)
the following estimation:

KMAX =

√
tMap + lta

2L+ ts + tr + ta
=

√
(5n + 1)mτop + nmτop

2L+ (n+ 1)τtr + nτtr + nτop
. (13)

Assuming m = kn for some k ∈ N and n 
 1, it is easy to get the following estimation from (13):

KMAX = O
(√

n
)
, (14)

where KMAX is the number of processor nodes, for which the maximal speedup is achieved.
When cu = (n+ 1)m we have ts = (cs + cu)τtr = (n+ (n+ 1)m)τtr . We obtain from this the

following estimation:

KMAX =

√
tMap + lta

2L+ ts + tr + ta
=

√
(5n + 1)mτop + nmτop

2L+ (n+ (n+ 1)m)τtr + nτtr + nτop
. (15)

Assuming m = kn for some k ∈ N and n 
 1, it is easy to get the following estimation from (15):

KMAX = O (1) . (16)

Thus, we can conclude that the ModAPL parallel algorithm will demonstrate a limited scalability when
a small part of the source data is dynamically changed. In this case, according to the equation (14), the
scalability bound increases proportionally to the square root of n, where n is the space dimension. If a
large part of the source data is dynamically changed, then, according to the equation (16), the ModAPL
parallel algorithm becomes inefficient due to the lack of speedup.
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Fig. 6. Test problem.

5. COMPUTATIONAL EXPERIMENTS

To verify the efficiency of the ModAPL parallel algorithm, we implemented this algorithm in C++
language using a parallel BSF-skeleton [15] based on MPI parallel programming library. All source
codes are freely available at https://github.com/leonid-sokolinsky/NSLP-Quest. As a test
problem, we used a scalable inequality system of dimension n from [21]. This system is presented in
Fig. 6. The number of inequalities in this system is m = 2n+ 2. The non-stationarity of the problem
was simulated by a translation of the polytope M (t). The computational experiments were conducted on
the “Tornado SUSU” computing cluster [16], whose specifications are shown in Table 1. The results of
the experiments are presented in Fig. 7. The diagrams show the dependence of the running time of the
ModAPL parallel algorithm on the displacement rate of the polytope M (t). The values of coordinate-
wise displacement indicate how many units per second will be added to each coordinate of the polytope
M before next iteration. In the first experiment, we used the system in Fig. 6 with dimension n = 32000
and number of inequalities m = 64002. Calculations were conducted on the hardware configurations
with 50, 75, and 100 processor nodes. The results of this experiment are presented in Fig. 7a. In the
diagram, K denotes the number of processor nodes in the hardware configuration. For K = 50, the
highest rate of the coordinate-wise shift at which the iterative process “catch up with the polytope” was
approximately 10 units per second. Adding up the displacement vectors for all coordinates, we get the
total rate vector with a length equal to

√
32000 · 102 ≈ 1789 units per second. For K = 75, the highest

total displacement rate at which the algorithm converged increases to 2683 units per second. And for
K = 100, the convergence of the algorithm was observed at the total displacement rate of up to 3220
units per second. For K > 100, the parallel efficiency for the problem of dimension n = 32000 began to
fall off.

In the second experiment, we used the system in Fig. 6 with dimension n = 54000 and number of
inequalities m = 108002. Calculations were conducted on the hardware configurations with 75, 100, and
150 processor nodes. The results of this experiment are presented in Fig. 7b. In this case, the maximum

Table 1. Specifications of “Tornado SUSU” computing cluster

Number of processor nodes 480

Processor Intel Xeon X5680 (6 cores 3.33 GHz)

Processors per node 2

Memory per node 24 GB DDR3

Interconnect InfiniBand QDR (40 Gbit/s)

Operating system Linux CentOS
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Fig. 7. Experiment results (K is the number of processor nodes): (a) n = 32000 and m = 64002; (b) n = 54000 and
m = 108002.

displacement rates of the polytope at which the algorithm converged were 697, 930, and 1162 units per
second, respectively. For K > 150, the parallel efficiency for the problem of dimension n = 54000 also
began to fall off.

Thus, the conducted experiments show that the proposed modified algorithm of pseudo-projections
allows the effective parallelization on cluster computing systems and is able to find feasible points for
non-stationary systems of linear inequalities that dynamically changed in a certain way with high rate.

6. CONCLUSION

In this article, we presented the modified parallel iterative pseudo-projection algorithm that can find
feasible points for non-stationary systems of linear inequalities of large dimensions on cluster computing
systems. This algorithm was presented as the ModAPL algorithm on lists using the higher-order
functions Map and Reduce. For the ModAPL algorithm, we obtained an estimation of the scalability
bound of its parallel version using the cost metric of the BSF parallel computing model [18]. If a small
part of the source data is dynamically changed during one iteration then the scalability bound is equal
to O (

√
n), where n is the problem dimension. If a large part of the source data is dynamically changed

during one iteration then the scalability bound is equal to O (1), which means there is no acceleration at
all. We implemented ModAPL parallel algorithm in C++ language using a parallel BSF-skeleton [15].
All source codes are freely available at https://github.com/leonid-sokolinsky/NSLP-Quest. By
using this implementation, we conducted the large-scale computational experiments on a computing
cluster. We simulated the problem non-stationarity by transferring the polytope bounding the feasible
region by a certain number of units during each iteration. The conducted experiments show that the
ModAPL parallel algorithm is able to find feasible points for non-stationary systems of linear inequalities
with 54 000 variables and 108 002 inequalities on a cluster computing system with 200 processor nodes.
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